Unit 2 Test
 Re-Take Review Handout

Do NOT write on this handout please!

1. Figure $A^{\prime} B^{\prime} C^{\prime} D^{\prime} F^{\prime}$ is a dilation of figure $A B C D F$ by a scale factor of $\frac{1}{2}$. The dilation is centered at $(-4,-1)$. Write TRUE or FALSE for each statement.
a) $\frac{A B}{A^{\prime} B^{\prime}}=\frac{B^{\prime} C^{\prime}}{B C}$
b) $\frac{A B}{A^{\prime} B^{\prime}}=\frac{B C}{D^{\prime} F^{\prime}}$
c) $\frac{A B}{A^{\prime} B^{\prime}}=\frac{D^{\prime} F^{\prime}}{B C}$
d) $\frac{A B}{A^{\prime} B^{\prime}}=\frac{B C}{B^{\prime} C^{\prime}}$

2. In a coordinate plane, segment $\overline{P Q}$ is the result of a dilation of segment $\overline{X Y}$ by a scale factor of $\frac{1}{2}$. What point is the center of dilation?

3. For parallel lines cut by a transversal, $\angle 1$ and $\angle 2$ are alternate interior angles and $\angle 2$ and $\angle 3$ are vertical angles. Describe $\angle 1$ and $\angle 3$?

4. In the triangle shown, $\overline{G H} \| \overline{D F}$. What is the length of $\overline{G E}$?

5. What is the justification for the third step in the proof below?

Theorem: Vertical Angles are Congruent

Given: $\angle 1$ and $\angle 2$ are a linear pair
$\angle 3$ and $\angle 4$ are a linear pair
Prove: $\angle 1 \cong \angle 3$

Statement	Justification
1. $\angle 1$ and $\angle 2$ are a linear pair	
$\angle 3$ and $\angle 4$ are a linear pair	

6. Consider the triangles shown. What can be used to prove the triangle are congruent?

7. In this diagram $\overline{D E} \cong \bar{J}$ and $\angle D \cong \angle J$.

What additional information do you need to prove that $\triangle D E F$ is congruent to $\triangle J I H$ by the SAS postulate?

Use the figure below to answer questions 8-9.
In this diagram, $\overline{C D}$ is the perpendicular bisector of $\overline{A B}$. The two-column proof shows that $\overline{A C}$ is congruent to $\overline{B C}$.

Step	Statement	Justification
1	$\overline{C D}$ is the perpendicular bisector of $\overline{A B}$	Given
2	$?$	
3	$\overline{\overline{C D}} \bar{\cong} \overline{C D}$	Definition of bisector
4	$\angle A D C$ and $\angle B D C$ are right angles	Reflexive Property
5	$\angle A D C \cong \angle B D C$	Definition of perpendicular lines
6	$\triangle A D C \cong \triangle B D C$	All right angles are congruent
7	$\overline{A C} \cong \overline{B C}$	$?$

8. What is the correct statement for step 2 ?
9. Which theorem or postulate would justify Step 6 ?
10. In the diagram of triangles BAT and FLU, $\angle B \cong \angle F$ and $\overline{B A} \cong \overline{F L}$.

Which statement is needed to prove $\triangle B A T \cong \triangle F L U$?
11. The figure below shows two similar triangles. What is the length of $\overline{E F}$?

12. Consider the construction of the angle bisector shown.

Write out the steps to create this construction.
13. Describe the construction shown in the accompanying diagram.

14. In this figure, $\overline{L N} \perp \overline{K M}$. What is the missing congruence that you would need to prove $\triangle K L N \cong \triangle M L N$?

15. This figure shows quadrilateral JKLM. Write TRUE or FALSE for each statement.

a. $\angle J L M \cong \angle L J K$
b. Show that $\overline{J K} \cong \overline{L M}$.
c. Show that $\triangle J K L \cong \triangle L M J$
d. Show that $\triangle J K L \cong \triangle J L M$
16. Use line segment $\overline{H I}$ to answer the question. List the steps to draw the perpendicular bisector of $\overline{H I}$ through midpoint J .

17. The figure shows rectangle ABCD . What is the value of x ?

18. In the rectangle below, $\overline{A H}\|\overline{B I}\| \overline{C J}, \overline{G B}\|\overline{H C}\| \overline{I D}, \angle A B E=54^{\circ}$, and $\angle C B F=54^{\circ}$.

Find the value of x.

19. In the figure below, $\overline{A C}=2 \overline{A D}$. Prove that $\triangle A D E \sim \triangle A C B$ by writing an equation just like $\overline{A C}=2 \overline{A D}$ using side lengths $\overline{A B}$ and $\overline{A E}$.

20. The figure below is a rectangular envelope with a flap shaped as an isosceles triangle. Find the value of x.

21. In the figure below, lines \boldsymbol{n} and \boldsymbol{m} are parallel. Which angle is congruent to angle \mathbf{A} ?

22. $\triangle A B C$ is similar but not congruent to $\triangle D E F$. Write TRUE or FALSE for each statement.
a) $\triangle A B C$ was dilated by a scale factor between 0 and 1
b) $\overline{A B}=\overline{D E}$
c) $\frac{A B}{D E}=\frac{B C}{E F}$
d) $\angle A=\angle D \square$
23. Right triangle ABC is shown below. If $\triangle A B C \sim \triangle D E F$ then what is the ratio of side EF to side DF?

24. Triangle SRT is an isosceles triangle. $\triangle S R T \sim \Delta W X Y$. Write TRUE or FALSE for each statement.

a) $\angle S=\angle W$
b) $\angle W=\angle X+\angle Y$
c) $\angle X=64^{\circ}$
d) $\angle W=52^{\circ}$

Use the figure below to answer questions 25-26.

25. Label each pair of angles is "supplementary" and "not supplementary."
a) 3 and 12
b) 11 and 12
c) 4 and 15
d) 1 and 13
26. Write TRUE or FALSE for each statement.
a) $\angle 9-\angle 16=180^{\circ}$
b) $\angle 1+\angle 6=180^{\circ}$
c) $\angle 10-180^{\circ}=\angle 11$
d) C. $\angle 2=180^{\circ}-\angle 6$
27. Triangle ABC has been dilated to its image $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$. What is the scale factor and center of dilation?

28. In the triangles below, segments $\overline{A E}$ and $\overline{B D}$ bisect each other. What congruence theorem proves $\triangle A B C \cong \triangle E D C$?

29. Theorem: The diagonals of a parallelogram bisect each other.

Given: ABCD is a parallelogram
Prove: $\overline{D B}$ bisects $\overline{A C}$ and $\overline{A C}$ bisects $\overline{D B}$
i.e. $\overline{A E} \cong \overline{E C}$ and $\overline{D E} \cong \overline{E B}$

Statement	Justification		
1. ABCD is a parallelogram	1. Given		
2. $\overline{A B}\\|\overline{C D} ; \overline{A D}\\| \overline{B C}$	2. Definition of a parallelogram		
3. $\angle 1 \cong \angle 4 ; \angle 2 \cong \angle 3$	3. Alternate interior angles are congruent		
4. $\overline{A D} \cong \overline{C B}$	4. Opposite sides of a parallelogram are congruent		
5. $\Delta D A E \cong \triangle B C E$	5.?		
6. $\overline{A E} \cong \overline{E C}$ and $\overline{D E} \cong \overline{E B}$	6. Corresponding parts of congruent triangles are congruent (CPCTC)		

What congruence theorem justifies statement 5?

