Unit 2 Test Re-Take Review Handout

Do NOT write on this handout please!

1. Figure A'B'C'D'F' is a dilation of figure ABCDF by a scale factor of $\frac{1}{2}$. The dilation is centered at (-4, -1). Write **TRUE** or **FALSE** for each statement.

a)
$$\frac{AB}{A'B'} = \frac{B'C'}{BC}$$
 b) $\frac{AB}{A'B'} = \frac{BC}{D'F'}$

c)
$$\frac{AB}{A'B'} = \frac{D'F'}{BC}$$
 d) $\frac{AB}{A'B'} = \frac{BC}{B'C'}$

2. In a coordinate plane, segment \overline{PQ} is the result of a dilation of segment \overline{XY} by a scale factor of $\frac{1}{2}$. What point is the center of dilation?

3. For parallel lines cut by a transversal, ∠1 and ∠2 are alternate interior angles and ∠2 and ∠3 are vertical angles. Describe ∠1 and ∠3?

4. In the triangle shown, $\overline{GH} \| \overline{DF}$. What is the length of \overline{GE} ?

5. What is the justification for the third step in the proof below?

Theorem: Vertical Angles are Congruent

Given: $\angle 1$ and $\angle 2$ are a linear pair $\angle 3$ and $\angle 4$ are a linear pair **Prove:** $\angle 1 \cong \angle 3$

Statement	Justification
1. $\angle 1$ and $\angle 2$ are a linear pair	1. Given
$\angle 3$ and $\angle 4$ are a linear pair	
2. $\angle 1$ and $\angle 2$ are supplementary	2. Linear Pair Theorem
$\angle 3$ and $\angle 4$ are supplementary	
3. $\angle 1 + \angle 2 = 180^{\circ}$ and $\angle 2 + \angle 3 = 180^{\circ}$	3. ?
4. $\angle 1 + \angle 2 = \angle 2 + \angle 3$	4. Substitution property of equality
5. $\angle 1 \cong \angle 3$	5. Subtraction property of equality

6. Consider the triangles shown. What can be used to prove the triangle are congruent?

7. In this diagram $\overline{DE} \cong \overline{JI}$ and $\angle D \cong \angle J$.

What additional information do you need to prove that $\triangle DEF$ is congruent to $\triangle JIH$ by the SAS postulate?

Use the figure below to answer questions 8-9.

In this diagram, \overline{CD} is the perpendicular bisector of \overline{AB} . The two-column proof shows that \overline{AC} is congruent to \overline{BC} .

Step	Statement	Justification
1	\overline{CD} is the perpendicular bisector of \overline{AB}	Given
2	<u> </u>	Definition of bisector
3	$\overline{CD} \cong \overline{CD}$	Reflexive Property
4	$\angle ADC$ and $\angle BDC$ are right angles	Definition of perpendicular lines
5	$\angle ADC \cong \angle BDC$	All right angles are congruent
6	$\triangle ADC \cong \triangle BDC$	<u> </u>
7	$\overline{AC} \cong \overline{BC}$	CPCTC

- 8. What is the correct statement for step 2?
- 9. Which theorem or postulate would justify Step 6?
- 10. In the diagram of triangles BAT and FLU, $\angle B \cong \angle F$ and $\overline{BA} \cong \overline{FL}$.

Which statement is needed to prove $\triangle BAT \cong \triangle FLU$?

11. The figure below shows two similar triangles. What is the length of \overline{EF} ?

12. Consider the construction of the angle bisector shown.

Write out the steps to create this construction.

13. Describe the construction shown in the accompanying diagram.

14. In this figure, $\overline{LN} \perp \overline{KM}$. What is the missing congruence that you would need to prove $\Delta KLN \cong \Delta MLN$?

15. This figure shows quadrilateral JKLM. Write TRUE or FALSE for each statement.

16. Use line segment \overline{HI} to answer the question. List the steps to draw the perpendicular bisector of \overline{HI} through midpoint J.

17. The figure shows rectangle ABCD. What is the value of x?

18. In the rectangle below, $\overline{AH} \parallel \overline{BI} \parallel \overline{CJ}$, $\overline{GB} \parallel \overline{HC} \parallel \overline{ID}$, $\angle ABE = 54^{\circ}$, and $\angle CBF = 54^{\circ}$.

Find the value of *x*.

19. In the figure below, $\overline{AC} = 2\overline{AD}$. Prove that $\Delta ADE \sim \Delta ACB$ by writing an equation just like $\overline{AC} = 2\overline{AD}$ using side lengths \overline{AB} and \overline{AE} .

20. The figure below is a rectangular envelope with a flap shaped as an isosceles triangle. Find the value of x.

21. In the figure below, lines **n** and **m** are parallel. Which angle is congruent to angle **A**?

- 22. $\triangle ABC$ is similar but not congruent to $\triangle DEF$. Write **TRUE** or **FALSE** for each statement.
- a) $\triangle ABC$ was dilated by a scale factor between 0 and 1 b) $\overline{AB} = \overline{DE}$ c) $\frac{AB}{DE} = \frac{BC}{EF}$ d) $\angle A = \angle D\Box$
- DE = EF

23. Right triangle ABC is shown below. If $\triangle ABC \sim \triangle DEF$ then what is the ratio of side EF to side DF?

24. Triangle SRT is an isosceles triangle. $\Delta SRT \sim \Delta WXY$. Write **TRUE** or **FALSE** for each statement.

Use the figure below to answer questions 25-26.

25. Label each pair of angles is "supplementary" and "not supplementary."

- a) 3 and 12 b) 11 and 12
- c) 4 and 15 d) 1 and 13

26. Write **TRUE** or **FALSE** for each statement.

a) $\angle 9 - \angle 16 = 180^{\circ}$ b) $\angle 1 + \angle 6 = 180^{\circ}$

c) $\angle 10 - 180^{\circ} = \angle 11$ d) C. $\angle 2 = 180^{\circ} - \angle 6$

27. Triangle ABC has been dilated to its image A'B'C'. What is the scale factor and center of dilation?

28. In the triangles below, segments \overline{AE} and \overline{BD} bisect each other. What congruence theorem proves $\triangle ABC \cong \triangle EDC$?

29. Theorem: The diagonals of a parallelogram bisect each other.

Given: ABCD is a parallelogram

Prove: \overline{DB} bisects \overline{AC} and \overline{AC} bisects \overline{DB}

i.e. $\overline{AE} \cong \overline{EC}$ and $\overline{DE} \cong \overline{EB}$

Statement	Justification
1. ABCD is a parallelogram	1. Given
2. $\overline{AB} \parallel \overline{CD}$; $\overline{AD} \parallel \overline{BC}$	2. Definition of a parallelogram
3. $\angle 1 \cong \angle 4$; $\angle 2 \cong \angle 3$	3. Alternate interior angles are
	congruent
4. $\overline{AD} \cong \overline{CB}$	4. Opposite sides of a parallelogram are
	congruent
5. $\Delta DAE \cong \Delta BCE$	5. ?
6. $\overline{AE} \cong \overline{EC}$ and $\overline{DE} \cong \overline{EB}$	6. Corresponding parts of congruent
	triangles are congruent (CPCTC)

What congruence theorem justifies statement 5?