Unit 1 Test Review: Transformations in the Coordinate Plane

1. As shown in the diagram below, when hexagon $A B C D E F$ is reflected over line m, the image is hexagon $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime} F^{\prime}$.

Under this transformation, which properties are preserved? distance, angles, orientation, area
2. Check all of the below series of transformations that will result in a congruent image.

- A translation five units up followed by a dilation using a scale factor of one
- A 270 degree counter clockwise rotation followed by a reflection over the line $y=0$
- A 90 degree rotation followed by a reflection over the line $y=x$
- A reflection over the x-axis followed by a dilation using a scale factor of 2

3. Fill in the blanks to make statements that will map the quadrilateral graphed below onto itself.

- Reflection over the line $y=1$
- 180 degree rotation about the point $(-1,1)$
- Reflection over the line $x=1$

4. The transformation $(x, y) \rightarrow(-x,-y)$ will map triangle $A B C$ to triangle $A^{\prime} B^{\prime} C^{\prime}$.

5. List the all the degrees of rotations (less than 360) that will map the figure below onto itself.

$$
360 \div 5=72^{\circ}
$$

$72^{\circ}, 144^{\circ}, 216^{\circ}, 288^{\circ}$

6. If the segment below is reflected over the line $y=1$, then translated 3 units to the left, the coordinates of the endpoints of the image are $(-4,-6)$ and $(2,0)$.

7. Quadrilateral JKLM and its reflected image are shown. Fill in the blanks

- The image shows the result of a reflection across the line $y=x$.
- The path that point L takes to L^{\prime} is perpendicular to the line of reflection.
- Each point (x, y) on quadrilateral JKLM maps to a point (y, x) on its image.
- Corresponding sides of quadrilateral JKLM and its image are not parallel.
-

8. The trapezoid below is translated such that $A^{\prime}=D$. The coordinates of the image B^{\prime} after the translation is $(0,2)$.

9. Check all of the below transformations on triangle $A B C$ that produces an image congruent to triangle $A B C$.

- reflection across $y=x$
- translation 3 units down and 4 units to the right
- dilation by a scale factor of 1.5
- clockwise rotation of 270 degrees

10. Find a series of transformations that maps $A B C$ to ${ }_{y} R S T$.

Answers may vary.
Reflect $\triangle A B C$ across the y-axis,
then translate it 2 units left and
5 units down

11. The image of point Q after a counterclockwise rotation of 270 degrees about the origin is $(3,-2)$.

$$
R_{270^{\circ}}(x, y)=(y,-x)
$$

$$
Q(2,3)
$$

$$
Q^{\prime}(3,-2)
$$

12. The function $R_{y=x}(x, y)=(y, x)$ describes the transformation of rectangle $P Q R S$ to $P^{\prime} Q^{\prime} R^{\prime} S^{\prime}$.

13. The graph below shows parallelogram TEAM. A congruent parallelogram $T^{\prime} E^{\prime} A^{\prime} M^{\prime}$ has coordinates $E^{\prime}(7,0), A^{\prime}(3,0), M^{\prime}(4,3)$, and $T^{\prime}(8,3)$.?

14. List all of the degrees of rotations (less than 360) that will map the preimage to the image below.
$90^{\circ}, 270^{\circ}$

15. The function $T(x, y)=(x+7, y-7)$ describes the transformation graphed below.

16. If trapezoid $D E F G$ below is reflected so that $E^{\prime}=(5,-5)$, the line of reflection is $y=-1$.

17. The function $(x, y) \rightarrow(-y, x)$ describes the rotation.

18. The single translation $(x, y) \rightarrow(x+4, y-4)$ accomplishes the same translation as the following series of translations: $(x, y) \rightarrow(x+5, y-3)$ followed by $(x, y) \rightarrow(x+2, y-4)$ followed $\mathrm{b}(x, y) \rightarrow(x-3, y-3) \mathrm{y}$.
19. List the coordinates for the image of point $\boldsymbol{P}(-2,4)$ after each of the following reflections.

- Point P is reflected over the y-axis. $(2,4)$
- Point P is reflected over the x-axis. $(-2,-4)$
- Point P is reflected over the line $y=x .(4,-2)$

20.

- Triangle D is a 270 degree counterclockwise rotation of triangle C.
- Triangle C is a 90 degree clockwise rotation of triangle B.
- Triangle C is a 180 degree rotation of triangle A .
- Triangle B is a 270 degree clockwise rotation of triangle C.

21. In the graph below $\triangle A B C \cong \triangle A^{\prime} B^{\prime} C^{\prime}$. Explain using transformations how you know the triangles are congruent. List the transformation or series of transformations. Also list corresponding angles and sides that are congruent. (Write in complete sentences.)

$\triangle A B C$ was rotated 270° counterclockwise.
$\overline{A B} \cong \overline{A^{\prime} B^{\prime}}$
$\angle A \cong \angle A^{\prime}$
$\overline{A C} \cong \overline{A^{\prime} C^{\prime}}$
$\angle B \cong \angle B^{\prime}$
$\overline{B C} \cong \overline{B^{\prime} C^{\prime}}$
$\angle C \cong \angle C^{\prime}$
22. Consider the following triangles graphed below. (Write in complete sentences.)

A. What series of transformations will map one of the graphed triangles onto the other triangle?

Reflect across the y-axis, then translate 6 units down.
B. Do the transformations ensure that the triangles are congruent? Explain.

Yes, reflections and translations preserve the shape and size.
23. Liam says that $G H J$ can be mapped to $X Y Z$ with a series of rigid motion transformations. Is he correct? Is so, give a series of transformations that works. If not, explain why not. (Write in complete sentences. Y $^{\text {K }}$

No, Liam is not correct. $\overline{G J}$ in $\Delta G H J$ is only 4 units long versus its "corresponding side" of $\overline{X Z}$ in $\triangle X Y Z$ which is 5 units long.
24. Triangles $A B C$ and $D E F$ are congruent.

A. Write a function to describe the translation that maps triangle $A B C$ to triangle DEF. $(x, y) \rightarrow(x+4, y-9)$
B. Write a function to describe the translation that maps triangle DEF to triangle ABC. $(x, y) \rightarrow(x-4, y+9)$
25. List all the single transformations that will map the figure onto itself. Rotations should be clockwise and less than $\mathbf{3 6 0}$ degrees. Name all lines of reflection. (Write in complete sentences.)

$90^{\circ}, 180^{\circ}, 270^{\circ}$
Lines of reflection: $x=0, y=0, y=x, y=-x$

