| Geometry: Period |  |
|------------------|--|
| Ms. Pierre       |  |
| Date:            |  |

## **CUMULATIVE UNIT 3 REVIEW**

Use the following to review for you test. Work the Practice Problems on a separate sheet of paper.

| Key<br>Standards                                       | Study Tips                                                                                                                                   | Practice Questions                                                                                                                                                                                                            |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Trigonometric<br>Ratios                                | <ul> <li>A ratio of the lengths of<br/>two sides of a right<br/>triangle is called a<br/>trigonometric ratio.</li> </ul>                     | 1. Find the indicated trigonometric ratio as a fraction and as a decimal rounded to th nearest ten-thousandth<br><b>A</b> $\sin M$ <b>B</b> $\cos Z$ <b>B</b> $\cos Z$                                                        |
|                                                        | <ul> <li>Use the right triangle<br/>below to show<br/>trigonometric ratios</li> </ul>                                                        | C $\tan L$<br>E $\cos L$<br>D $\sin X$<br>E $\tan Z$<br>C $\tan L$<br>D $\sin X$<br>D $\sin X$<br>C $\tan Z$                                                                                                                  |
|                                                        | r<br>R S T                                                                                                                                   | 2. Find each sine or cosine. Round to four decimal places, if necessary.                                                                                                                                                      |
|                                                        | $\sin R = \frac{\text{leg opposite } \angle R}{\text{hypotenuse}} = \frac{r}{t}$                                                             | $\begin{array}{c} A \\ 11 \\ 29 \\ C \end{array} \\ B \\ F \\ 20 \\ E \end{array} \\ C \\ B \\ C \\ B \\ C \\ B \\ C \\ C \\ C \\ C$                                                                                          |
|                                                        | $\cos R = \frac{\log \operatorname{adjacent} \operatorname{to} \angle R}{\operatorname{hypotenuse}} = \frac{s}{t}$                           |                                                                                                                                                                                                                               |
|                                                        | $	an R = rac{\log \operatorname{opposite to} \angle R}{\log \operatorname{adjacent to} \angle R} = rac{r}{s}$                              | <b>D</b> $\sin D$ <b>E</b> $\sin F$ <b>F</b> $\cos G$                                                                                                                                                                         |
| Calculating<br>Trigonometric<br>Ratios                 | To calculate     trigonometric ratios,                                                                                                       | 3. Use your calculator to find each trigonometric ratio.<br>Round to the nearest hundredth.                                                                                                                                   |
|                                                        | make sure you<br>calculator is in <u>degree</u><br><u>mode</u>                                                                               | ▲ tan 51° ■ sin 80° ⊂ cos 77°                                                                                                                                                                                                 |
|                                                        | For Example:                                                                                                                                 | <b>D</b> $\tan 14^\circ$ <b>E</b> $\sin 55^\circ$ <b>F</b> $\cos 48^\circ$                                                                                                                                                    |
|                                                        | cos(76)<br>.2419218956                                                                                                                       | 4. Use your calculator to find each angle measure to the nearest degree.                                                                                                                                                      |
|                                                        | <b>B</b> $\sin^{-1}(0.45)$                                                                                                                   | <b>A</b> $\tan^{-1}(2.1)$ <b>B</b> $\cos^{-1}\left(\frac{1}{3}\right)$ <b>C</b> $\cos^{-1}\left(\frac{5}{6}\right)$                                                                                                           |
|                                                        | sin <sup>-1(.45)</sup><br>26.74368395                                                                                                        | <b>D</b> $\sin^{-1}(0.5)$ <b>E</b> $\sin^{-1}(0.61)$ <b>F</b> $\tan^{-1}(0.09)$                                                                                                                                               |
| Writing<br>Equivalent<br>Statements<br>(Complementary) | <ul> <li>The Sine of an acute angle is EQUAL to the Cosine of the complement of that angle.</li> <li>Complement is the sum of 90°</li> </ul> | <ul> <li>5.</li> <li>Write the complementary angle.</li> <li>A oven that sin 15° ≈ 0.259, write the cosine of a complementary angle.</li> <li>Given that cos 62° ≈ 0.469, write the sine of a complementary angle.</li> </ul> |

