Name: \qquad \# \qquad
Geometry: Period \qquad
Ms. Pierre
Date: \qquad

CUMULATIVE UNIT 3 REVIEW

Use the following to review for you test. Work the Practice Problems on a separate sheet of paper.

Key Standards	Study Tips	Practice Questions
Trigonometric Ratios	- A ratio of the lengths of two sides of a right triangle is called a trigonometric ratio. - Use the right triangle below to show trigonometric ratios $\begin{aligned} & \sin R=\frac{\text { leg opposite } \angle R}{\text { hypotenuse }}=\frac{r}{t} \\ & \cos R=\frac{\text { leg adjacent to } \angle R}{\text { hypotenuse }}=\frac{s}{t} \\ & \tan R=\frac{\text { leg opposite to } \angle R}{\operatorname{leg} \text { adjacent to } \angle R}=\frac{r}{s} \end{aligned}$	1. Find the indicated trigonometric ratio as a fraction and as a decimal rounded to th nearest ten-thousandth (A) $\sin M$ (B) $\cos Z$ (C) $\tan L$ D $\sin X$ (E) $\cos L$ F $\tan Z$ 2. Find each sine or cosine. Round to four decimal places, if necessary. $\sin B$ (B) $\cos C$ (C) $\cos B$ $\sin D$ (E) $\sin F$ $\cos G$
Calculating Trigonometric Ratios	- To calculate trigonometric ratios, make sure you calculator is in degree mode For Example: A $\cos 76^{\circ}$ $\cos (76) .2419218956$ $3 \sin ^{-1}(0.45)$ $\sin ^{-1}\left(\frac{45)}{26.74368395}\right.$	3. Use your calculator to find each trigonometric ratio. Round to the nearest hundredth. (A) $\tan 51^{\circ}$ (B) $\sin 80^{\circ}$ (C) $\cos 77^{\circ}$ $\tan 14^{\circ}$ (E) $\sin 55^{\circ}$ 4. Use your calculator to find each angle measure to the nearest degree. (A) $\tan ^{-1}(2.1)$ (B) $\cos ^{-1}\left(\frac{1}{3}\right)$ (C) $\cos ^{-1}\left(\frac{5}{6}\right)$ (D) $\sin ^{-1}(0.5)$ (E) $\sin ^{-1}(0.61)$ (F) $\tan ^{-1}(0.09)$
Writing Equivalent Statements (Complementary)	- The Sine of an acute angle is EQUAL to the Cosine of the complement of that angle. - Complement is the sum af on ${ }^{\circ}$	5. Write the complementary angle. A aiven that $\sin 15^{\circ} \approx 0.259$, write the cosine of a complementary angle. Given that $\cos 62^{\circ} \approx 0.469$, write the sine of a complementary angle.

	For example: A Write $\sin 42^{\circ}$ in terms of the cosine. $\begin{aligned} \sin 42^{\circ} & =\cos (90-42)^{\circ} \\ & =\cos 48^{\circ} \end{aligned}$	6. B Write an equivalent statement in the terms given. Write $\sin 28^{\circ}$ in terms of the cosine. Write $\cos 51^{\circ}$ in terms of the sine.
Finding Missing SIDE of Right Triangles	- Many real-world problems that involve looking up to an object can be described in terms of an angle of elevation, which is the angle between an observer's line of sight and a horizontal line.	7. Find the missing side of each triangle below. A D B E C F
Finding Missing ANGLE of Right Triangles	- When an observer is looking down, the angle of depression is the angle between the observer's line of sight and a horizontal line.	8. Find the missing angle of each triangle below. B C A D E F
Solving Problems with Right Triangles	For example: Let $x=$ the height of the cliff. $\begin{array}{rlrl} \tan 34^{\circ} & =\frac{x}{1000} \tan =\frac{\text { opposite }}{\text { aljacent }} \\ 1000\left(\tan 34^{\circ}\right) & =x & & \text { Multiply each side by } 1000 . \\ 674.5 & =x & & \text { Use a calculatar. } \end{array}$ The height of the cliff is about 674.5 feet.	9. Solve each problem. A HILL TOP The angle of elevation from point A to the top of a hill is 49°. If point A is 400 feet from the base of the hill, how high is the hill? B SUN Find the angle of elevation of the Sun when a 12.5 -meter-tall telephone pole casts an 18-meter-long shadow. C SKIING A ski run is 1000 yards long with a vertical drop of 208 yards. Find the angle of depression from the top of the ski run to the bottom. D AIR TRAFFIC From the top of a 120 -foot-high tower, an air traffic controller observes an airplane on the runway

