Use the following to review for you test. Work the Practice Problems on a separate sheet of paper.

Key Standards	Study Tips	Practice Questio
Parallel Lines and Transversals	- Congruent angles have equal measures If two parallel lines are cut by a transversal then two pairs of: - Corresponding angles are congruent - Alternate interior angles are congruent - Alternate exterior angles are congruent - Consecutive (same-side) angles are supplementary	1. Find each angle measure. A $\mathrm{m} \angle 1$ \qquad (c) $\mathrm{m} \angle A B C$ \qquad ($\mathrm{m} \angle H J K$ \qquad (D) $\mathrm{m} \angle M P Q$
Identifying Congruent Parts	Triangles are congruent if they have the same size and shape. Their corresponding parts, the angles and sides that are in the same positions are congruent. To identify corresponding parts of congruent triangles, look at the order of the vertices in the congruence statement.	2. A Which congruence statement correctly indicates that the two given triangles are congruent? (A) $\triangle A B C \cong \triangle E F D$ (C) $\triangle A B C \cong \triangle D E F$ (B) $\triangle A B C \cong \triangle F D E$ (D) $\triangle A B C \cong \triangle F E D$ B $\triangle M N P \cong \triangle R S T$. What are the values of x and y ? (F) $x=26, y=21 \frac{1}{3}$ (H) $x=25, y=20 \frac{2}{3}$ (G) $x=27, y=20$ (J) $x=30 \frac{1}{3}, y=16 \frac{2}{3}$ C $\triangle A B C \cong \triangle X Y Z . \mathrm{m} \angle A=47.1^{\circ}$, and $\mathrm{m} \angle C=13.8^{\circ}$. Find $\mathrm{m} \angle Y$. (A) 13.8 (C) 76.2 (B) 42.9 (D) 119.1 D $\triangle M N R \cong \triangle S P Q, N L=18, S P=33, S R=10, R Q=24$, and $Q P=30$. What is the perimeter of $\triangle M N R$? (F) 79 (H) 87 (G) 85 (J) 97
SSS, SAS, AAS, ASA, and HL	Ways to Prove Triangles Congruent - \quad SSS (Side, Side, Side) three sides of one triangle - SAS (Side, Angle, Side) two sides and the included angle - ASA (Angle, Side, Angle) two angles and the included side - AAS (Angle, Angle, Side) two angles and the non-	3. A Which of the three triangles below can be proven congruent by SSS or SAS? (A) I and II (B) II and III (C) I and III (D) I, II, and III B Jacob wants to prove that $\triangle F G H \cong \triangle J K L$ using SAS. He knows that $\overline{F G} \cong \overline{J K}$ and $\overline{F H} \cong \overline{J L}$. What additional piece of information does he need? (A) $\angle F \cong \angle J$ (C) $\angle H \cong \angle L$ (B) $\angle G \cong \angle K$ (D) $\angle F \cong \angle G$ C Which postulate or theorem justifies the congruence statement $\triangle S T U \cong \triangle V U T$? (F) ASA (H) HL

Dilations	Dilation - Another type of transformation - Change in the size - Requires a center point and scale factor If a scale factor is: - Greater than 1, then your figure is an enlargement - Between 0 and 1 , then your figure is an reduction	6. Graph the dilated image of triangle JKL using a scale factor of 2 and $(0,0)$ as the center of dilation. $\mathrm{J}:$ \qquad $J^{\prime}:$ \qquad K: \qquad K^{\prime} : \qquad L: \qquad L': \qquad Describe the dilation of quadrilateral MNOP, using the origin as the center. \qquad \qquad
Similarity	Similar Polygons are two polygons are similar if and only if: - Corresponding angles are congruent - Corresponding sides are proportional	7. Use the given diagram to i.) identify corresponding equal angles ii.) write a similarity statement between two of the triangles iii.) write a proportion iv.) solve for the indicated variables using the proportion A
	Similar means same shape, not necessarily the same size. Similarity Ratio is the ratio of lengths of corresponding sides of two similar polygons	Fill in the blanks below. $\Delta \mathrm{JKL} \sim \Delta$ \qquad Why? $\begin{aligned} & x= \\ & y= \\ & \hline \end{aligned}$ C $\Delta \mathrm{QMN} \sim \Delta$ \qquad Why? $x=$ \qquad $y=$ \qquad

