Name: _______ # _____

Geometry: Period	
Ms. Pierre	
Date:	

Use the following to review for you test. Work the Practice Problems on a separate sheet of paper.

Key Standards	Study Tips	Practice Questions
Identifying three types of Transformations	Translation and Rotation keeps the orientation (direction) of the figure the same <u>Pre-image</u> is the original figure, <u>Image</u> is the resulting figure	Match the term on the left to the correct expression on the right. 1. transformation A. A function that describes a change in the position, size, or shape of a figure. 2. reflection B. A function that slides a figure along a straight line. 3. translation C. A transformation that flips a figure across a line.
Translations	A figure " slides " horizontally, vertically, or both. A positive integer describes a translation <u>right or up</u> on a coordinate plane. A <u>negative</u> integer describes a translation <u>left or down</u> on a coordinate plane.	 A Multistep Graph triangle XYZ with vertices X(-2, -5), Y(2, -2), and Z(4, -4) on the coordinate grid. B On the same coordinate grid, graph and label triangle X'Y'Z', the image of triangle X'Y'Z', the image of triangle X'Y'Z', the image of triangle X'Y'Z' after a translation of 1 unit to the left and 2 units down. D Analyze Relationships How would you describe the translation that maps triangle XYZ onto triangle X'Y'Z''?
Reflections	A figure is "flipped " over a line of symmetry. A reflection produces a mirror image of a figure. Reflect a figure over the x- axis - when reflecting over the x-axis, change the y- coordinates to their opposites. (x, -y) Reflect a figure over the y- axis - when reflecting over the y-axis, change the x- coordinates to their opposites. (-x, y)	 5. A Graph the image of the figure shown after a reflection across the <i>y</i>-axis. B On the same coordinate grid, graph the image of the figure you drew in part a after a reflection across the <i>x</i>-axis. C Make a Conjecture What other sequence of transformations would produce the same final image from the original preimage? Check your answer by performing the transformations. Then make a conjecture that generalizes your findings.

Rotations	A figure "turns " about a fixed point at a given angle and a given direction. 90 degree counterclockwise rotation around the origin (0,0), use:(-y, x) 180 degree rotation around the origin (0,0), use: (-x, -y) 270 degree counterclockwise rotation around the origin (0,0), use:(y, -x)	Draw the image of the figure after the given rotation about the origin. 6. 180° 7. 270° counterclockwise
Line Symmetry	A figure has symmetry if there is a transformation of the figure such that the image coincides with the pre-image A figure has line symmetry if it can be reflected across a line so that the image coincides with the pre-image.	 8. Explain whether each figure has line symmetry. A X B C C D E F R
Rotational Symmetry	A figure has rotational symmetry if it can be rotated about a point by an angle greater than 0° and less than 360° so that the image coincides with the pre-image.	 9. Explain whether each figure has rotational symmetry. If so, give the angle of rotational symmetry and the order of the symmetry. A B O O O O O O O O O O O O O O O O O O

Sequences of Transformations	When two or more transformations are combined to form a new transformation the result is called a sequence of transformations In a composition , one transformation produces an image upon which the other transformation is then performed.	 10. A △ABC is reflected across the y-axis. Then its image is rotated 90° about the origin. What are the coordinates of the final image of point A under this composition of transformations? (A) (-1, -2) (B) (-2, 1) (C) (1, 2) (D) (-2, -1) B Which composition of transformations maps △ABC into the fourth quadrant? (F) Reflect across the x-axis and then reflect across the y-axis. (G) Rotate about the origin by 180° and then reflect across the y-axis. (H) Translate along the vector (-5, 0) and then rotate about the origin by 90°. (J) Rotate about the origin by 90° and then translate along the vector (1, -2). (C) Which is equivalent to the composition of two translations? (A) Reflection (B) Rotation (C) Translation (D) Glide reflection
---------------------------------	---	--