Name: \qquad \# \qquad
Geometry: Period \qquad
Ms. Pierre
Date: \qquad
Use the following to review for you test. Work the Practice Problems on a separate sheet of paper.

Key Standards	Study Tips	Practice Questions
Identifying three types of Transformations	Translation and Rotation keeps the orientation (direction) of the figure the same Pre-image is the original figure, Image is the resulting figure	Match the term on the left to the correct expression on the right. 1. transformation A. A function that describes a change in the position, size, or shape of a figure. 2. reflection B. A function that slides a figure along a straight line. 3. translation C. A transformation that flips a figure across a line.
Translations	A figure "slides" horizontally, vertically, or both. A positive integer describes a translation right or up on a coordinate plane. A negative integer describes a translation left or down on a coordinate plane.	4. (A) Multistep Graph triangle $X Y Z$ with vertices $X(-2,-5)$, $Y(2,-2)$, and $Z(4,-4)$ on the coordinate grid. B On the same coordinate grid, graph and label triangle $X^{\prime} Y^{\prime} Z^{\prime}$, the image of triangle $X Y Z$ after a translation of 3 units to the left and 6 units up. C Now graph and label triangle $X^{\prime \prime} Y^{\prime \prime} Z^{\prime \prime}$, the image of triangle $X^{\prime} Y^{\prime} Z^{\prime}$ after a translation of 1 unit to the left and 2 units down. D Analyze Relationships How would you describe the translation that maps triangle $X Y Z$ onto triangle $X^{\prime \prime} Y^{\prime \prime} Z^{\prime \prime}$?
Reflections	A figure is "flipped" over a line of symmetry. A reflection produces a mirror image of a figure. Reflect a figure over the x-axis- when reflecting over the x-axis, change the y coordinates to their opposites. ($\mathbf{x},-\mathbf{y}$) Reflect a figure over the y -axis- when reflecting over the y-axis, change the x coordinates to their opposites. (-x, y)	5. Graph the image of the figure shown after a reflection across the y-axis. B On the same coordinate grid, graph the image of the figure you drew in part a after a reflection across the x-axis. C Make a Conjecture What other sequence of transformations would produce the same final image from the original preimage? Check your answer by performing the transformations. Then make a conjecture that generalizes your findings. \qquad \qquad \qquad \qquad

Rotations	A figure "turns" about a fixed point at a given angle and a given direction. 90 degree counterclockwise rotation around the origin (0,0), use:(-y, \mathbf{x}) 180 degree rotation around the origin (0,0), use: $(-x,-y)$ 270 degree counterclockwise rotation around the origin (0,0), use:($\mathbf{y},-\mathbf{x}$)	Draw the image of the figure after the given rotation about the origin. 6. 180° 7. 270° counterclockwise
Line Symmetry	A figure has symmetry if there is a transformation of the figure such that the image coincides with the pre-image A figure has line symmetry if it can be reflected across a line so that the image coincides with the pre-image.	8. Explain whether each figure has line symmetry. A B C D E F
Rotational Symmetry	A figure has rotational symmetry if it can be rotated about a point by an angle greater than 0° and less than 360° so that the image coincides with the pre-image.	9. Explain whether each figure has rotational symmetry. If so, give the angle of rotational symmetry and the order of the symmetry. (A) B c D E F

