\qquad
\qquad

Geometry: Period \qquad
Ms. Pierre
Date: \qquad

Rotations

Today's Objective

KWBAT represent a rotation as a function of coordinate pairs and rotate a figure in the plane following a rule described in words or as a function.

A circle is the set of all points that are the same distance from a point called the center. Visualize turning the circle shown on the right so that point A moves onto point B. If you did that, the points would remain the same distance from the center, but they would be in a different location.

A rotation is a transformation that turns a figure around a point, called the

Just as with points on a circle, when you rotate a point around a center of rotation, it remains the same distance from the center of rotation. You can rotate a figure any number of degrees.

Counterclockwise is considered the positive direction, so the rotation shown below would be described as -45° rotation around the origin. The same image could be obtained, however, by rotating the figure 315° clockwise, since $360-45=315$. So, this rotation could also be called a 315° rotation around the origin.

You can represent a rotation as a function for which the input is a coordinate pair. The output of that function is the image produced by the rotation.

A 90° rotation is equivalent to a \qquad rotation and has the function:

$$
R_{90^{\circ}}(x, y)=
$$

\qquad

A 180° rotation is equivalent to a \qquad rotation and has the function:

$$
R_{180^{\circ}}(x, y)=
$$

\qquad

A 270° rotation is equivalent to a \qquad rotation and has the function:

$$
R_{270^{\circ}}(x, y)=
$$

Write true or false for each statement. If false, rewrite the statement to make it true.

1. A circle is the set of all points that are equidistant from a point called the center.
2. A quarter-turn in the counterclockwise direction is equivalent to a -90° rotation.

Example 1

Triangle GHJ is graphed on the coordinate plane. Draw the image of this triangle after counterclockwise rotations of $90^{\circ}, 180^{\circ}$, and 270° about the origin.

Step 1: Identify the coordinates of the vertices of $\Delta G H J$.
The vertices are $\mathrm{G}(1,2), \mathrm{H}$ \qquad , \qquad) , and J (\qquad , \qquad).

Step 2: Use the "circle technique" to determine the new vertices after the counterclockwise rotation.

$$
\begin{aligned}
& R_{90^{\circ}} \text { (___ }, \\
&)=(\\
& \text {, }
\end{aligned}
$$

Step 3: Use the "circle technique" to determine the new vertices after the counterclockwise rotation.

Step 4: Use the "circle technique" to determine the new vertices after the counterclockwise rotation.

$$
\begin{array}{ll}
R_{270^{\circ}}(1,2) & =(\square, \square) \\
R_{270^{\circ}}(\ldots, \square) & =(\square, \square) \\
R_{270^{\circ}}(\ldots, \square & =(\square, \square)
\end{array}
$$

Step 5: Graph and label each image.

- Check for Understanding

Triangle ABC is graphed on the coordinate plane. Draw the image of this triangle after counterclockwise rotations of $90^{\circ}, 180^{\circ}$, and 270° about the origin.

Step 1: Identify the coordinates of the vertices of $\triangle A B C$.
The vertices are A (\qquad , \qquad), B \qquad , \qquad), and C (\qquad , \qquad).

Step 2: Use the "circle technique" to determine the new vertices after the counterclockwise rotation.

Step 3: Use the "circle technique" to determine the new vertices after the counterclockwise rotation.
$R_{180^{\circ}}$ (, _) $=($ \qquad , \qquad
 $R_{180^{\circ}}\left(_, \quad, \quad\right.$ ___ $)$
\qquad $)=($ \qquad , \qquad

Step 4: Use the "circle technique" to determine the new vertices after the counterclockwise rotation.

$$
\left.\begin{array}{ll}
R_{270^{\circ}}(1,2) & =(\square, \square) \\
R_{270^{\circ}}(\ldots, \square) & =(\square, \square) \\
R_{270^{\circ}}(\ldots, \square & =(\square, \square
\end{array}\right)
$$

Step 5: Graph and label each image.

Independent Practice

1.) Triangle KLM is graphed on the coordinate plane. Draw the image of this triangle after counterclockwise rotations of 270° about the origin.

Step 1: Identify the coordinates of the vertices of $\triangle A B C$.
The vertices are K (\qquad , \qquad), L (\qquad , \qquad) , and M (\qquad , \qquad).

Step 2: Use the "circle technique" to determine the new vertices after the counterclockwise rotation.

Step 5: Graph and label the image.


```
REMEMBER A -90}\mp@subsup{0}{}{\circ}\mathrm{ rotation
is equal to a 270}\mp@subsup{}{}{\circ}\mathrm{ rotation.
```


Homework

Use the given function to rotate $\triangle K L M$ to form $\Delta K^{\prime} L^{\prime} M^{\prime}$. Identify the coordinates of the vertices of the image. Then identify the degree measure of the rotation.

1. $R_{\theta}(x, y)=(-x,-y)$

2. $R_{\theta}(x, y)=(-y, x)$

$K^{\prime}(\ldots, \ldots) L^{\prime}\left(_, \quad\right.$ _ $) M^{\prime}(\ldots, \ldots)$
