Name:	
-------	--

#

Geometry: Period	
Ms. Pierre	
Date:	

Rotations

Today's Objective

KWBAT represent a rotation as a function of coordinate pairs and rotate a figure in the plane following a rule described in words or as a function.

A **circle** is the set of all points that are the same distance from a point called the center. Visualize turning the circle shown on the right so that point A moves onto point B. If you did that, the points would remain the same distance from the center, but they would be in a different location.

A rotation is a transformation that turns a figure around a point, called the

Just as with points on a circle, when you rotate a point around a center of rotation, it remains the same distance from the center of rotation. You can rotate a figure any number of degrees.

Counterclockwise is considered the positive direction, so the rotation shown below would be described as -45° rotation around the origin. The same image could be obtained, however, by rotating the figure 315° clockwise, since 360 - 45 = 315. So, this rotation could also be called a 315° rotation around the origin.

You can represent a rotation as a function for which the input is a coordinate pair. The output of that function is the image produced by the rotation.

A 90° rotation is equivalent to a ______ rotation and has the function:

 $R_{90^{\circ}}(x,y) = _$

A 180° rotation is equivalent to a _____ rotation and has the function:

 $R_{180^{\circ}}(x, y) =$

A 270° rotation is equivalent to a _____ rotation and has the function:

 $R_{270^{\circ}}(x, y) =$ _____

Write true or false for each statement. If false, rewrite the statement to make it true.

1. A circle is the set of all points that are equidistant from a point called the center.

2. A quarter-turn in the counterclockwise direction is equivalent to a -90° rotation.

Example 1

Triangle GHJ is graphed on the coordinate plane. Draw the image of this triangle after counterclockwise rotations of 90°, 180°, and 270° about the origin.

Step 1: Identify the coordinates of the vertices of $\triangle GHJ$.

The vertices are G (1, 2), H (_____, ____), and J (_____, ____).

Step 2: Use the "circle technique" to determine the new vertices after the counterclockwise rotation.

Step 4: Use the "circle technique" to determine the new vertices after the counterclockwise rotation.

Step 5: Graph and label each image.

Check for Understanding

Triangle ABC is graphed on the coordinate plane. Draw the image of this triangle after counterclockwise rotations of 90°, 180°, and 270° about the origin. γ

Step 1: Identify the coordinates of the vertices of $\triangle ABC$ **.**

The vertices are A (_____, ____), B (_____, ____), and C (_____, ____).

Step 2: Use the "circle technique" to determine the new vertices after the counterclockwise rotation.

Step 4: Use the "circle technique" to determine the new vertices after the counterclockwise rotation.

Step 5: Graph and label each image.

1.) Triangle KLM is graphed on the coordinate plane. Draw the image of this triangle after counterclockwise rotations of 270° about the origin.

Step 1: Identify the coordinates of the vertices of $\triangle ABC$ **.**

Step 2: Use the "circle technique" to determine the new vertices after the counterclockwise rotation.

Step 5: Graph and label the image.

REMEMBER A -90° rotation is equal to a 270° rotation.

Homework

Use the given function to rotate $\triangle KLM$ to form $\triangle K'L'M'$. Identify the coordinates of the vertices of the image. Then identify the degree measure of the rotation.

