Name: \qquad \# \qquad

Geometry: Period \qquad
Ms. Pierre
Date: \qquad

Congruent Triangles

Today's Objective

SWBAT prove triangles are congruent by using SSS and SAS.

Two triangles are \qquad if all of their corresponding \qquad are congruent and all of their corresponding \qquad are congruent. However, you do not need to know the measure of every side and angle to show that two triangles are \qquad .

5-1-1 Side-Side-Side (SSS) Congruence		
POSTULATE	HYPOTHESIS	CONCLUSION
If three sides of one triangle are congruent to three sides of another triangle, then the triangles are congruent.		

Example 1

Which postulate, if any, can be used to prove the triangles congruent?
1.

3.

2.

4.

Theorem 5-2-3

Hypotenuse-Leg (HL) Congruence

Example 2

Which postulate if any, can be used to prove the triangles congruent?
1.

2.

3.

4.

Guided Practice

Determine whether each pair of triangles is congruent. If so, write a congruence statement and explain why the triangles are congruent.
1.

2.

3.

4.

Use the given information to determine whether the two triangles are congruent by SAS. Write "yes" or "no".
5. $\angle L \cong \angle M, \overline{L D} \cong \overline{M R}, \overline{L O} \cong \overline{M A}$

Independent Practice

Determine whether each pair of triangles is congruent. If s write a congruence statement and explain why the triangle are congruent.
1.

2.

3.

4.

Use the given information to determine whether the two triangles a congruent by SAS. Write "yes" or "no".
5. $\angle L \cong \angle M, \overline{L D} \cong \overline{M R}, \angle O \cong \angle A$

Homework

Determine whether each pair of triangles is congruent. If so, write a congruence statement and explain why the triangles are congruent.
1.

3.

2.

4.

Use the given information to determine whether the two triangles a congruent by SAS. Write "yes" or "no".
5. $\overline{L D} \cong \overline{M R}, \overline{L O} \cong \overline{M A}, \angle O \cong \angle A$

6. $\overline{L D} \cong \overline{M R}, \overline{L O} \cong \overline{M A}, \overline{D O} \cong \overline{R A}$

