Name:	#
-------	---

Geometry: Period ______ Ms. Pierre

Date: _____

Inscribed Angles & Polygons

Today's Objective

SWBAT use the properties of inscribed angles and polygons to find the measure of arcs and angles.

 $\angle DEF$ is an inscribed angle. \widehat{DF} is the intercepted arc. \widehat{DF} subtends $\angle DEF$.

An ______ angle is an angle whose vertex is on a circle and whose sides contain chords of the circle.

An ______ arc is the part of the circle enclosed by the endpoints of the inscribed angle.

An angle ______ to an arc if the arc lies between the endpoints of the angle.

Example 1

Find the given measures.

a) $m\widehat{YZ}$

b) $\angle YWZ$

Check for Understanding

Use the diagram from Example 1 to find the given measures.

a) mŴX

b) $\angle WZX$

A polygon is an **inscribed polygon** if all of its vertices lie on a circle.

ABCD is inscribed in $\odot E$.

The circle that contains the vertices is a **circumscribed circle**.

THEOREM

A quadrilateral can be inscribed in a circle if and only if its opposite angles are supplementary.

D, E, F, and G lie on \odot C if and only if $m \angle D + m \angle F = m \angle E + m \angle G = .$

THEOREM

If a right triangle is inscribed in a circle, then the hypotenuse is a diameter of the circle. Conversely, if one side of an inscribed triangle is a diameter of the circle, then the triangle is a right triangle and the angle opposite the diameter is the right angle.

 $m \angle ABC = 90^{\circ}$ if and only if is a diameter of the circle.

Example 2

Find the value of each variable.

Check for Understanding

Find the measure of each interior angle of the quadrilateral.

Home Work

Find the measures of the indicated angle or arc in $\bigcirc P$, given $m\widehat{LM} = 84^{\circ}$ and $m\widehat{KN} = 116^{\circ}$

Home Work

Find the values of the variables.

