\qquad \# \qquad

Geometry: Period \qquad
Ms. Pierre
Date: \qquad

Transformations in the Coordinate Plane: Translations

Today's Objective

SWBAT understand how to represent a translation in the plane as a function and how to translate points, lines, lines segments, and figures.

A translation is a operation that slides a geometric figure in the plane. You can think of a translation of a geometric figure as a function in which the input is not a single value, x, but rather a point on the coordinate plane, (x, y). When you apply the function to a point, the output will be the coordinates of the translated image of that point.

You can translate not only individual points but also entire graphs and figures. When you apply a function to every point on the figure, the resulting points will form the translated figure. For each line segment on the original figure, the translated image will contain either a corresponding parallel line segment or a collinear line segment of equal length.

In a horizontal translation, the x-coordinate changes, but the y-coordinate stays the same. A horizontal translation of a units can be represented by the function $T(x, y)=(x+a, y)$. If $a>0$, the figure slides to the right. If $a<0$, the figure slides to the left.

The transformation shown on the right is the result of applying the function $T(x, y)=(x+7, y)$ to $\triangle J K L$. In this example, a is a positive number, 7 , so the figure slides to the right.

In a vertical translation, the y-coordinate changes, but the x-coordinate stays the same. A vertical translation of b units can be represented by the function $T(x, y)=(x, y+b)$. If $b>0$, the figure slides up. If $b<0$, the figure slides down.

The transformation shown on the right is the result of applying the function $T(x, y)=(x, y+5)$ to $\triangle D F G$. In this example, b is a positive number, 5 , so the figure slides up.

In a slant translation, both the x - and y-coordinates change.
Slant translations can be described by the function $T(x, y)=(x+a, y+b)$.

The transformation shown on the right is the result of applying the function $T(x, y)=(x-8, y-6)$ to $\triangle A B C$. In this example, a and b are both negative, so the figure slides to the left and down.

Use the graph below for questions 1-3.

1. Name the line segment that is parallel to $\overline{M N}$. \qquad
2. Name a line segment that is parallel to $\overline{M P}$.
3. How does $\overline{N P}$ compare to $\overline{N^{\prime} P^{\prime}}$?

Example 1

Translate $\triangle P Q R$ according to the rule: $\mathrm{T}(\mathrm{x}, \mathrm{y})=(\mathrm{x}+6, \mathrm{y}-1)$

Step 1: Identify the coordinates of the vertices of $\triangle P Q R$.
The vertices are P (\qquad ,__(_)), Q (\qquad
\qquad) , and R (\qquad ,).

Step 2: Treat each point as an input and substitute it into the rule above to find the coordinates of the translated image.
$T(-3,4)=(-3+6,4-1)=(3,3)$
$T(-4,2)=\left(ـ^{+}+6\right.$, \qquad -1) $=($ \qquad
$\mathrm{T}(-1,3)=\left({ }^{-}+6\right.$, \qquad $-1)=($ \qquad

Step 3: Plot points P^{\prime}, Q^{\prime}, and \boldsymbol{R}^{\prime}. Connect them to form the translated image.

- Check for Understanding

Translate $\triangle P Q R$ according to the rule: $\mathrm{T}(\mathrm{x}, \mathrm{y})=(\mathrm{x}-2, \mathrm{y}-6)$

Step 1: Identify the coordinates of the vertices of $\triangle P Q R$.
The vertices are P (\qquad , \qquad) , Q (\qquad ,) , and R (\qquad , _).

Step 2: Treat each point as an input and substitute it into the rule above to find the coordinates of the translated image.
$\mathrm{T}(-3,4)=\left(__{-}-2, \ldots-6\right)=\left(__{-}, \quad{ }_{\sim}\right)$
$\mathrm{T}(-4,2)=\left(__{-}-2, \ldots-6\right)=\left(ـ_{-}, \quad{ }_{\sim}\right)$
$T(-1,3)=($ \qquad -2 , \qquad $-6)=$ \qquad ___)

Step 3: Plot points P^{\prime}, Q^{\prime}, and R^{\prime}. Connect them to form the translated image.

Example 2

Use a function to describe how parallelogram ABCD could be translated so it covers parallelogram WXYZ exactly.

Step 1: Describe the slide needed to move vertex c of parallelogram ABCD onto point Y, the corresponding point on parallelogram WXYZ .

The diagram show that
point C must slide ___ units to the right and \qquad units up to move onto point Y. Every other point in ABCD must slide in the same way.

Step 2: Use a function to describe the translation.

A horizontal translation of \qquad units to the right is in the positive direction. It can be represented by the expression \qquad . A vertical translation of \qquad units up is also in the positive direction. It can be represented by the expression \qquad .

The rule for the translation is : $T(x, y)=$ \qquad

- Check for Understanding

Use a function to describe how triangle MNP could be translated so it covers triangle $M^{\prime} N^{\prime} P^{\prime}$ exactly.

Step 1: Describe the slide needed to move vertex M of triangle MNP onto point M^{\prime}, the corresponding point on triangle $M^{\prime} N^{\prime} \mathbf{P}^{\prime}$.

The diagram shows that point M must slide \qquad units to the \qquad and \qquad units \qquad to move onto point \mathbf{M}^{\prime}. Every other point in MNP must slide in the same way.

Step 2: Use a function to describe the translation.
A horizontal translation of \qquad units to the \qquad is in the
\qquad direction. It can be represented by the expression
\qquad .

A vertical translation of \qquad units \qquad is in the
\qquad direction. It can be represented by the expression
\qquad .
\qquad

4. Independent Practice

1.) Translate $\triangle P Q R$ according to the rule: $\mathrm{T}(\mathrm{x}, \mathrm{y})=(\mathrm{x}+4, \mathrm{y}-3)$

Step 1: Identify the coordinates of the vertices of $\triangle P Q R$.
The vertices are P (\qquad , \qquad) , Q (\qquad , \qquad) , and R (\qquad , _

Step 2: Treat each point as an input and substitute it into the rule above to find the coordinates of the translated image.

$\mathrm{T}(-1,3)=\left(_^{-}+4\right.$, \qquad $-3)=$ \qquad ,_()

Step 3: Plot points P^{\prime}, Q^{\prime}, and R^{\prime}. Connect them to form the translated image.

2.) Use a function to describe how triangle WXYZ could be translated so it covers triangle $W^{\prime} X^{\prime} Y^{\prime} Z^{\prime}$ exactly.

Step 1: Describe the slide needed to move vertex W of triangle WXYZ onto point W^{\prime}, the corresponding point on triangle $W^{\prime} \mathbf{X}^{\prime} \mathbf{Y}^{\prime} \mathbf{Z}^{\prime}$.

The diagram shows that point W must slide \qquad units to the
\qquad and \qquad units \qquad to move onto point \mathbf{M}^{\prime}.

Every other point in MNP must slide in the same way.

Step 2: Use a function to describe the translation.
A horizontal translation of \qquad units to the \qquad is in the
\qquad direction. It can be represented by the expression
\qquad .

A vertical translation of \qquad units \qquad is in the
\qquad direction. It can be represented by the expression
\qquad .

The rule for the translation is: $T(x, y)=$ \qquad

Homework

Draw the image for each translation of the given preimage. Use prime (') symbols to name points on each image.

1. Translate $\overleftrightarrow{A B} 3$ units to the right.

2. $T(x, y)=(x, y-4)$

3. Translate trapezoid PQRS 7 units to the left and 4 units down.

4. $T(x, y)=(x-8, y+3)$

$$
\begin{aligned}
& \text { REMEMBER The preimage and the image } \\
& \text { should be the same size and same shape. }
\end{aligned}
$$

Write a function to describe how the quadrilateral $A B C D$ was translated to form $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ in each graph.
5.

$$
T(x, y)=
$$

\qquad
6.

$T(x, y)=$ \qquad

