Name: ______ # _____

Geometry: Period ______ Ms. Pierre

Date: _____

Trigonometric Ratios

Today's Objective

SWBAT compute trigonometric ratios for acute angles in right triangles.

Example 1

Find the sin X, cos X, and tan X. Write each answer as a fraction.

Check for Understanding

Find the sin Y, cos Y, and tan Y. Write each answer as a fraction.

Example 2

Compare the sine, the cosine, and the tangent ratios for $\angle A$ in each triangle below.

Are the triangles similar?

- Are the corresponding angles congruent?
- Are the sides proportional?

	Large triangle	Small triangle
$\sin A = \frac{opposite}{hypotenuse}$		
$\cos A = \frac{adjacent}{hypotenuse}$		
$\tan A = \frac{opposite}{adjacent}$		
Conclusion: Trigonometric ratios for angles		
of	triangles are the	·

Check for Understanding

$\Delta ABC \sim \Delta XYZ$

a) What is sine of $\angle X$?

b) What cosine of $\angle X$?

c) What tangent of $\angle X$?

Find sin R, cos R, tan R for each right triangle. Write each answer as a fraction.

Independent Practice

Find sin S, cos S, tan S for each right triangle. Write each answer as a fraction.

Home Work

Find sin R, cos R, tan R and sin S, cos S, tan S, for the right triangle. Write each answer as a fraction.

Home Work

A student says that $\sin D > \sin A$ because the side lengths of ΔDEF are greater than the side lengths of ΔABC . Explain why the student is incorrect.

