Name: \qquad \# \qquad

Geometry: Period \qquad
Ms. Pierre
Date: \qquad

Trigonometric Ratios

Today's Objective

SWBAT compute trigonometric ratios for acute angles in right triangles.

The ratios of the side lengths of a right triangle depend on the measure of its acute angles. These are called \qquad _.

Sine of $\angle A(\sin \mathrm{~A})=\frac{\mathbf{0}}{\mathbf{H}}=\frac{a}{c}$

Cosine of $\angle A(\cos \mathrm{~A})=\frac{\mathbf{A}}{\mathrm{H}}=\frac{b}{c}$

Tangent of $\angle A(\tan \mathrm{~A})=\frac{\mathbf{0}}{\mathbf{A}}=\frac{a}{b}$

Thinking " \qquad -- \qquad -___' ' can help you remember these ratios. Using these ratios, you can find the length of any side of a right triangle if you know one acute angle and any other side.

Example 1

Find the $\sin \mathrm{X}, \cos \mathrm{X}$, and $\tan \mathrm{X}$. Write each answer as a fraction.

\square Check for Understanding

Find the $\sin \mathrm{Y}, \cos \mathrm{Y}$, and $\tan \mathrm{Y}$. Write each answer as a fraction.

Example 2

Compare the sine, the cosine, and the tangent ratios for $\angle A$ in each triangle below.

Are the triangles similar?

- Are the corresponding angles congruent?
- Are the sides proportional?

	Large triangle	Small triangle
$\sin \mathrm{A}=\frac{\text { opposite }}{\text { hypotenuse }}$		
$\cos \mathrm{A}=\frac{\text { adjacent }}{\text { hypotenuse }}$		
$\tan \mathrm{A}=\frac{\text { opposite }}{\text { adjacent }}$		

Conclusion: Trigonometric ratios for \qquad angles of \qquad triangles are the \qquad .

\square Check for Understanding

$\Delta \mathrm{ABC} \sim \Delta \mathrm{XYZ}$

a) What is sine of $\angle X$?
b) What cosine of $\angle X$?
c) What tangent of $\angle X$?

Guided Practice

Find $\sin R, \cos R, \tan R$ for each right triangle. Write each answer as a fraction.
1.

2.

3.

4. $\Delta \mathrm{ABC} \sim \Delta \mathrm{XYZ}$

What is sine of $\angle Y$?

Independent Practice

Find $\sin \mathrm{S}, \cos \mathrm{S}, \tan \mathrm{S}$ for each right triangle. Write each answer as a fraction.
1.

2.

3.

4. $\Delta \mathrm{ABC} \sim \Delta \mathrm{XYZ}$

What is cosine of $\angle Y$?

Home Work

Find $\sin \mathrm{R}, \cos \mathrm{R}, \tan \mathrm{R}$ and $\sin \mathrm{S}, \cos \mathrm{S}, \tan \mathrm{S}$, for the right triangle. Write each answer as a fraction.

$\sin \mathrm{R}=$
$\cos \mathrm{R}=$
$\cos \mathrm{R}=$
$\tan \mathrm{R}=$
$\tan \mathrm{R}=$
2.

3.

$\sin \mathrm{R}=$
$\cos \mathrm{R}=$
$\sin S=$
$\sin S=$
$\sin S=$
$\cos S=$
$\cos S=$
$\cos S=$
$\tan \mathrm{S}=$
$\tan \mathrm{S}=$
$\tan \mathrm{S}=$

碂 Home Work

A student says that $\sin \mathrm{D}>\sin \mathrm{A}$ because the side lengths of $\triangle D E F$ are greater than the side lengths of $\triangle A B C$. Explain why the student is incorrect.

\qquad

