Name

Geometry: Period _____ Ms. Pierre Date:

Parts of a Circle

Today's Objective

SWBAT identify parts of a circle and as well as classify arcs as minor or major.

______#_____

Circular arcs are classified by their measure.

_____ arcs measure less than 180°. They are typically named using _____ points.

_____ arcs measure less than 180°. They are typically named using _____ points.

An arc measuring exactly 180° may be called a

Explore

Term	Definition	Illustration
Circle	A round plane figure whose boundary (circumference) consists of points equidistant for a fixed point (center)	A .
Arc	An unbroken part of a circle	Arc of a circle
Central Angle	An angle whose vertex is at the center of a circle	A O
Minor Arc	Given two points on a circle, it is the shortest arc linking them. Arc that have a measure less than 180°	AC is a minor arc
Major Arc	Given two points on a circle, it is the longest arc linking them. Arc that have a measure greater than 180°	D B 79° A C ADC is a major arc
Radius	A straight line from the center to the circumference of a circle or sphere	r = radius
Diameter	A straight line passing from side to side through the center of a circle or sphere	0 diameter
Chord	A segment whose endpoints are on a circle	chord a
Inscribed Angle	An angle whose vertex is on the circle and whose sides contain chords of a circle	
Secant	A segment that contains a chord of a circle and has exactly one endpoint outside of the circle	A
Tangent	A line in the plane of a circle that intersects a circle at only one point, the point of tangency	

Example 1

Tell whether the line, ray, or segment is best described as a *radius*, *chord*, *diameter*, *secant*, or *tangent* of $\bigcirc P$.

a. \overline{RT}

b. \overrightarrow{WT}

c. \overline{PT}

d. \overrightarrow{RQ}

Check for Understanding

a. What word best describes \overline{QR} ?

b. What word best describes \overline{PR} ?

Example 2

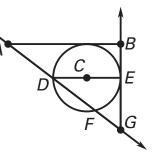
Name the arc shown in bold and classify it as a major arc, a minor arc or a semi-circle.

Check for Understanding

 \overline{PM} is a diameter for $\bigcirc R$. Classify each arc as a major arc, a minor arc or a semi-circle.

a) *MQ*

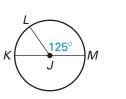
b) MNP


c) MNQ

Guided Practice

1) Tell whether the line, ray, or segment is best described as a *radius*, *chord*, *diameter*, *secant*, or *tangent* of $\bigcirc C$.

a. \overline{DF}


b. *AB*

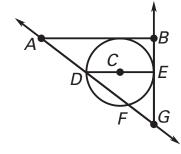
c. *CE*

2) \overline{KM} is a diameter for $\bigcirc J$. Classify each arc as a major arc, a minor arc or a semi-circle.

a) \widehat{LM}

b) *LMK*

c) *KLM*

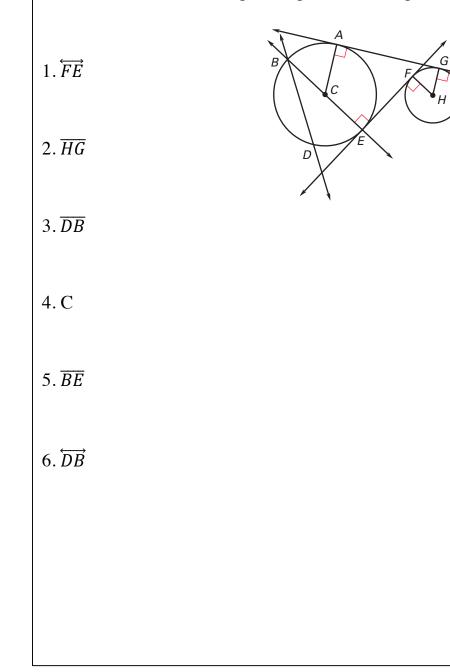


1) Tell whether the line, ray, or segment is best described as a *radius*, *chord*, *diameter*, *secant*, or *tangent* of $\bigcirc C$.

b. \overleftrightarrow{AG}

c. \overrightarrow{EB}

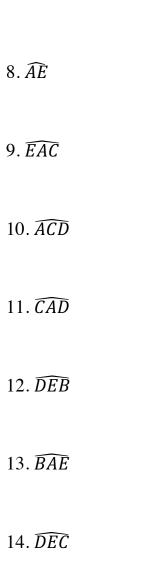
a. \overline{DE}

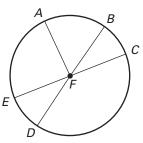


2) \overline{CD} is a diameter for $\bigcirc E$. Classify each arc as a major arc, ; minor arc or a semi-circle.

a) \widehat{AD}	d) \widehat{BDC}
b) \widehat{AB}	e) ÂCD
c) \widehat{CD}	f) \widehat{BC}

Home Work


State the best term for the given figure in the diagram.



Home Work

In $\bigcirc F$, determine whether the given arc is a major arc, a min arc or a semi-circle.

7. \widehat{AB}

