Name: \qquad \# \qquad

Geometry: Period \qquad
Ms. Pierre
Date: \qquad

Similar Triangles (Part 2)

Today's Objective

SWBAT apply the properties of similar polygons to solve problems as well as prove certain triangles are similar by using AA, SSS, and SAS.

Theorem 8-4-2 Converse of the Triangle Proportionality Theorem

THEOREM	HYPOTHESIS	CONCLUSION	
If a line divides two sides of a triangle proportionally, then it is parallel to the third side.		$A\left(\frac{A E}{E B}=\frac{A F}{F C}\right.$	
	$\overleftrightarrow{E F} \\| \overrightarrow{B C}$		

Example 1

In the figure $\overleftrightarrow{B C}\|\overleftrightarrow{D E}\| \overleftrightarrow{F G}$. Complete each proportion.

$$
\begin{array}{ll}
\frac{A B}{B D}=\frac{A C}{\square} & \frac{\square}{D F}=\frac{A E}{E G} \\
\frac{D F}{}=\frac{E G}{C E} & \frac{A F}{A B}=\frac{\square}{A C} \\
\frac{B D}{C E}=\frac{}{E G} & \frac{A B}{A C}=\frac{B F}{\square}
\end{array}
$$

Example 2

Find the missing segment
a)

b)

Corollary 8-4-3 Two-Transversal Proportionality

COROLLARY	HYPOTHESIS	CONCLUSION
If three or more parallel lines intersect two transversals, then they divide the transversals proportionally.		$\frac{A C}{C E}=\frac{B D}{D F}$

Example 3

Find the missing sides.

THEOREM	HYPOTHESIS	CONCLUSION
An angle bisector of a triangle divides the opposite side into two segments whose lengths are proportional to the lengths of the other two sides. ($\Delta<$ Bisector Thm.)		$\frac{B D}{D C}=\frac{A B}{A C}$

Example 4

Find the missing sides.
a)

b)

n
 Guided Practice

Complete each proportion.

1. $\frac{M B}{B A}=\frac{M D}{\square}$
2. $\frac{M R}{R S}=\frac{M W}{\square}$

/ Independent Practice

Complete each proportion.

1. $\frac{B D}{A C}=\frac{M D}{\square}$
2. $\frac{M B}{M A}=\frac{\square}{M C}$

Find the value of x.
3.

4.

M, O and R are the midpoints of the sides of $\triangle \mathrm{ABC}$. Complete each statement.

5. $\overline{B C} \|$ \qquad
6. If $\mathrm{BC}=62$, then $\mathrm{MR}=$ \qquad
7. If $m \angle B C A=52$, then $m \angle B O M=$ \qquad
8. If $\mathrm{AB}=50$, then $\mathrm{OR}=$ \qquad
8. If $\mathrm{BM}=28$, then $\mathrm{AM}=$ \qquad

Homework

1. $\frac{T Z}{X Z}=\frac{\square}{Y A}$
2. $\frac{W Y}{W A}=\frac{T X}{\square}$
3. $\frac{Y A}{W Y}=\frac{X Z}{\square}$
4. $\frac{W A}{\square}=\frac{T Z}{T X}$
5. $\frac{A Y}{W}=\frac{X Z}{T X}$
6. $\frac{T Z}{\frac{W}{m}}=\frac{W A}{W Y}$

Find the value of x.

9.

Homework

11.

12.

14.

16. In the figure $\overleftrightarrow{Y A}\|\overleftrightarrow{O E}\| \overleftrightarrow{B R}$. If $\mathrm{YO}=4, \mathrm{ER}=16$, and $\mathrm{AR}=24$, find $O B$ and $A E$.

