Name: ______# _____

Geometry: Period _____

Ms. Pierre

Date: _____

Similar Triangles (Part 2)

Today's Objective

SWBAT apply the properties of similar polygons to solve problems as well as prove certain triangles are similar by using AA, SSS, and SAS.

Theorem 8-4-2 Converse of the Triangle Proportionality Theorem					
THEOREM		HYPOTHESIS	CONCLUSION		
If a line divides two sides of a triangle proportionally, then it is parallel to the third side.		$ \begin{array}{c} A & AE \\ \overline{EB} & = \overline{FC} \end{array} $	ÉF ∥ BC		

Example 1

In the figure $\overrightarrow{BC} \parallel \overrightarrow{DE} \parallel \overrightarrow{FG}$. Complete each proportion.

$$\frac{AB}{BD} = \frac{AC}{\blacksquare}$$

$$\frac{DF}{DF} = \frac{EG}{EG}$$

$$\frac{DF}{AB} = \frac{\blacksquare}{AC}$$

$$\frac{BD}{CE} = \frac{\blacksquare}{EG}$$

$$\frac{AB}{AC} = \frac{BF}{AC}$$

Example 2

Find the missing segment

Corollary 8-4-3 Two-Transversal Proportionality					
COROLLARY		HYPOTHESIS		CONCLUSION	
If three or more parallel lines intersect two transversals, then they divide the transversals proportionally.		A 1 C	B D F	$\frac{AC}{CE} = \frac{BD}{DF}$	

Example 3

Find the missing sides.

Theorem 8-4-4	Triangle A)	
THEOREM		HYPOTHESIS	CONCLUSION
An angle bisector of a triangle divides the opposite side into two segments whose lengths are proportional to the lengths of the other two sides. (△ ∠ Bisector Thm.)		$B \longrightarrow C$	$\frac{BD}{DC} = \frac{AB}{AC}$

Example 4

Find the missing sides.

Guided Practice

Complete each proportion.

1.
$$\frac{MB}{BA} = \frac{MD}{\Box}$$
 2. $\frac{MR}{RS} = \frac{MW}{\Box}$

$$2.\frac{MR}{RS} = \frac{MW}{100}$$

Find the value of x.

M, O and R are the midpoints of the sides of ΔABC. Complete each statement.

 $5.\overline{OR} \parallel$

6. If MO = 15, then $AC = _____$

7. If $m \angle BMO = 75$, then $m \angle BAC =$

8. If BM = 28, then $AM = _____$

Independent Practice

Complete each proportion.

$$1. \frac{BD}{AC} = \frac{MD}{\square} \qquad \qquad 2. \frac{MB}{MA} = \frac{\square}{MC}$$

$$2.\frac{MB}{MA} = \frac{1.01}{MC}$$

Find the value of x.

3.

4.

M, O and R are the midpoints of the sides of ΔABC. Complete each statement.

5. BC ∥

6. If BC = 62, then $MR = _____$

7. If $m \angle BCA = 52$, then $m \angle BOM =$

8. If AB = 50, then OR =

Homework

$$1. \ \frac{TZ}{XZ} = \frac{\Box}{YA}$$

$$2.\frac{wy}{wA} = \frac{TX}{2}$$

$$3. \ \frac{YA}{WY} = \frac{XZ}{122}$$

$$4. \frac{WA}{||||} = \frac{TZ}{TX}$$

$$5. \ \frac{AY}{100} = \frac{XZ}{TX}$$

$$6.\frac{TZ}{\Box} = \frac{WA}{WY}$$

Find the value of x.

7.

8.

9.

10.

Homework

11.

12.

13.

14.

15.

16. In the figure $\overrightarrow{YA} \parallel \overrightarrow{OE} \parallel \overrightarrow{BR}$. If YO = 4, ER = 16, and AR = 24, find OB and AE.

