Name:	#
Geometry: Period	
Ms. Pierre	
Date:	

Tangents Part I

Today's Objective

SWBAT use properties of tangents to identify tangent lanes and find he lengths of missing segments.

The shortest distance from a tangent to the center of a circle is the radius drawn to the point of tangency

Example 1

 $J\overline{L}$ is a radius of \odot J. Determine whether \overline{KL} is tangent to \odot J. Justify your answer.

☑ Check for Understanding

Determine whether \overline{GH} is tangent to $\bigcirc F$. Justify your answer

Example 2

 \overline{JH} is tangent to $\bigcirc G$ at J. Find the value of x.

Check for Understanding

Find the value of x. Assume that segments that appear to be tangent are tangent.

Guided Practice

1. Determine whether \overline{FG} is tangent to $\odot E$. Justify your answer

2. Find the value of x. Assume that segments that appear to be tangent are tangent.

Independent Practice

Determine whether \overline{FG} is tangent to $\odot E$. Justify your answer.

1.

2. Find the value of x. Assume that segments that appear to be tangent are tangent.

Home Work

Determine whether \overline{XY} is tangent to the given circle. Justify your answer.

1.

Find the value of x. Assume that segments that appear to be tangent are tangent.

3.

